
USING MACHINE LEARNING TO
PREDICT G/G/S QUEUE

PERFORMANCE FROM SIMULATION-
BASED DATASETS

Kings University College (MEM)

Aashrith Raj Tatipamula
Mother Teresa Catholic Secondary School

Dr. Rodrigues
Mr. Laszlo

June 25 , 2025th

Motivation

Importance of Queuing Systems
Lots of places rely on Queues (ie. Hospitals)
long wait times = frustration & inefficiency.
Efficient queuing leads to:

Better resource allocation
Reduced costs
Improved patient/customer satisfaction

Limitations of Queuing Equations
Classical formulas (like M/M/s) rely on strict assumptions:

Constant arrival/service rates
Poisson/exponential distributions

Real-life queues have:
messy arrivals
variability in service

Idea
What if we learned the patterns from data instead of forcing
assumptions?
ML models can predict metrics like Wq without needing all
the strict math assumptions.
More flexible, more accurate, and scalable across systems.

Objective

Build and test a machine learning model that predicts Wq for M/M/s queuing
systems.

My Plan:

Build a simulated dataset with 10,000 data points
Train multiple models (Neural Networks, Random Forests, etc.)
Compare performance using metrics like MAE, RMSE and MSE
Identify the best performing algorithm for Wq prediction An M/M/s queue is a queuing

model where arrivals and
service times are

exponentially distributed,
and there are s parallel

servers serving customers
from a single queue.

Methodology

Inputs:
 λ (arrival rate), μ (service rate), s (servers), ρ (utilization), Lq (queue length)

Output:
 Wq

Used Visual Basic for Applications (VBA) to simulate 10,000 rows of M/M/s
queue data.
Each data point was generated by randomly sampling:

ρ: between 0.5 – 0.99 (realistic system load without system collapse)
λ (Arrival rate): Between 1 – 20
s: Random integer between 1 – 10

μ (Service rate): Formula
Lq: Formula
Wq: Allen-Cunneen formula

Lq = λ × Wq

μ = λ / (ρ × s)

Descriptive Analysis for Dataset

Variable Mean Std Dev Min Max

ρ (Utilization) 0.746 0.142 0.5001 0.9899

s (Servers) 5.49 2.9 1 10

λ (Arrival Rate) 10.49 5.52 1 20

μ (Service Rate) 4.37 5.24 0.1065 38.5716

Wq (Wait Time) 0.87 2.62 0.0045 58.915

Lq (Queue Length) 5.57 11.72 0.0784 95.96

Neural Network (TensorFlow Keras)
Architecture: Dense(32) → Dense(16) → Dense(1)
Activation: ReLU, final layer Softplus
Optimizer: Adam
Learning Rate = 0.1
Epochs: 100, Batch size: 32

Random Forest (Scikit Learn)
n_estimators = 100
No max depth tuning (default)

XGBoost
n_estimators = 100
max_depth = 6
learning_rate = 0.1

Methodology

Evaluation Metrics Used
MAE – Mean Absolute Error
MSE – Mean Squared Error
RMSE – Root Mean Squared Error
Comparison done on both training and
test sets

Results

 Actual Wq Predicted Wq Difference

0.3095 0.172997 0.136503

0.1523 0.265574 0.113274

0.0386 0.016812 0.021788

0.1558 0.138838 0.016962

0.1415 0.024299 0.117201

0.3245 0.343307 0.018807

0.0173 0.047095 0.029795

0.1893 0.068019 0.121281

0.3286 0.413843 0.085243

0.0150 0.002284 0.012716

Actual vs. Predicted Random Wq

 Actual Wq Predicted Wq Difference

0.3095 0.312973 0.003473

0.1523 0.151618 0.000682

0.0386 0.040916 0.002316

0.1558 0.133239 0.022561

0.1415 0.157413 0.015913

0.3245 0.308196 0.016304

0.0173 0.015558 0.001742

0.1893 0.186924 0.002376

0.3286 0.309357 0.019243

0.0150 0.016093 0.001093

 Actual Wq Predicted Wq Difference

0.3095 0.307267 0.002233

0.1523 0.156843 0.004543

0.0386 0.038860 0.000260

0.1558 0.153880 0.001920

0.1415 0.138292 0.003208

0.3245 0.322262 0.002238

0.0173 0.017903 0.000603

0.1893 0.189210 0.000090

0.3286 0.331816 0.003216

0.0150 0.015451 0.000451

Neural Network XGBoost Random Forest

Plots

Overall Performance

Model MAE MSE RMSE

Random Forest 0.0162 0.0166 0.1287

Neural Network 0.0982 0.0687 0.2621

XGBoost 0.0173 0.0014 0.0368

Training Metrics

Model MAE MSE RMSE

Random Forest 0.0342 0.0642 0.2533

Neural Network 0.0959 0.0729 0.2700

XGBoost 0.0455 0.0818 0.2860

Testing Metrics

Random Forest

Lowest error overall
Captures non-linear
relationships
Robust to outliers

Neural Network

Decent
Learns smooth
approximations (Softplus)
Performance consistent with
training

XGBoost

Solid
Boosting improves
performance
Learns from RF's mistakes

Condition Common Mistakes

Too many low ρ (close to 0) underestimation of Wq → model understates Wq

Overfitting
Learning rate of 0.1 is pretty high. NN overshot optimal
weights. Not setting a max_depth meant some trees grew
too deep.

No Cross-Validation (CV)
I used a basic train-test split. K-fold CV would’ve helped
reduce variance

Not Enough Feature Engineering I used basic parameters (λ, μ, s, ρ, Lq)

What didn’t Work?

Random Forest is the best in both accuracy and reliability.
XGBoost is a close second and would be more tunable for optimization.
Neural Network is still useful for smooth approximations but could improve with more tuning or deeper architecture.

Limitations

Synthetic data only: No real-world hospital or service data used.
Only M/M/s queues: Model doesn’t account for G/G/s or multi-phase systems.
Limited hyperparameter tuning: Especially for Neural Network and XGBoost
No time-dependent analysis: Static averages used, not dynamic simulations

Future Work

Apply to real hospital queue data: test model in real-world systems.
Variability: train the ML models with coefficients of variation
Compare with Simulation: Integrate with Simul8 to verify accuracy against real
simulations.
Hyperparameter Optimization : GridSearch for NN and XGB.

Key Takeways

ML can accurately predict Wq in queuing systems
especially Random Forests.
Random Forest = reliable: Consistently low error,
handles non-linearities well, and doesn't need crazy
tuning.
Neural Networks = okay here: Struggled unless
perfectly tuned. Better for more complex patterns
or huge data.
XGBoost = powerful but picky: Performs great, but
sensitive to hyperparameters. Not always plug-and-
play. Was overfitting.

THANK YOU

Scan QR Code to access Report, Code and Website

